5.4 Work

Constant Force

When a body moves a distance d along a straight line as a result of being acted on by a force of constant magnitude F in the direction of motion, we define the work W done by the force on the body with the formula

W=Fd
In the SI system, units of force are $\mathrm{kg}-\mathrm{m} / \mathrm{sec}^{2}$ or Newtons (N). The units of work are $\mathrm{N}-\mathrm{m}$ or Joules.
In the British System, units of force are pounds(lbs). The units of work are ft-lbs.
Ex.
(b) How much work is done if a constant force of $50-\mathrm{lb}$ is used to pull a cart 25 ft ?
(a) How much work is done lifting a 20 kg box 2 meters off the ground? \qquad

Variable Force
Suppose a particle moves along the x-axis from a to b acted upon by a continuous, variable force $f(x)$.

Example: When a particle is located a distance x feet from the origin, a force of $x^{2}+2 x$ pounds acts on it. How much work is done in moving it from $x=1$ to $x=3$?

HOOKE'S LAW for SPRINGS
Hooke's Law states that the force required to maintain a spring stretched x units beyond its natural length is proportional to x , that is $f(x)=k x$
where k, the constant of proportionality is called the spring constant.

Example:
A spring has a natural length of 0.2 m . A 40 N force is required to stretch (and hold the spring) to a length of 0.3 m . How much work is done in stretching the spring from .35 m to .38 m ??

Ex: A 5-lb bucket is lifted from the ground into the air by pulling in 20 feet of rope at a constant speed. The rope weighs $0.08 \mathrm{lb} / \mathrm{ft}$. How much work was spent lifting the bucket and rope?

Suppose that the bucket is leaking. It starts with 2 gallons (16 lb) of water in it and leaks at a constant rate. It finishes draining just as it reaches the top. How much work was spent lifting the water alone (neglect the rope and bucket.)

